Control of Nonlinear System with a Disturbance Using Multilayer Neural Networks

نویسنده

  • Hong Seok Seong
چکیده

The mathematical solutions of the stability convergence are important problems in system control. In this paper, such problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error, and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are updated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is, as the weights of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL

The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Stabilization of Nonlinear Control Systems through Using Zobov’s Theorem and Neural Networks

Zobov’s Theorem is one of the theorems which indicate the conditions for the stability of a nonlinear system with specific attraction region. We have applied neural networks to approximate some functions mentioned in Zobov’s theorem in order to find the controller of a nonlinear controlled system whose law in a mathematical manner is difficult to make. Finally, the effectiveness and the applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003